Geologists Think They Finally Know Why Earthquakes Happen in The ‘Wrong’ Places

(, 2013)

Geologists Think They Finally Know Why Earthquakes Happen in The ‘Wrong’ Places

Our planet has scars.

22 DEC 2017

Somewhere in Eastern Tennessee the ground seems to quiver ever so gently, only to swiftly pass and leave those who felt it to question if it even happened. Seismologists record it, noting once again – far from the boundary of any tectonic plate – the soft rumble of an earthquake where none should be.

Often quiet, occasionally devastating, these shakes are nearly always perplexing. Now geologists think they have some idea of what’s causing them, and the answer lies deep beneath our feet.

As we learn in school, earthquakes are typically caused by the release of tension built up between the steady grind of Earth’s tectonic plates.

But every year there are hundreds of tremors far from plate boundaries, known as ‘intraplate’ earthquakes. They don’t have an easy explanation, but geologists have recently identified a common characteristic of a number of such earthquake locations.

The Canadian county of Charlevoix, US county of New Madrid, and the whole eastern third of Tennessee frequently experience earthquakes above a magnitude of 2.5, in spite of their distance from plate boundaries.

They also share a similar geology far underground.

“We present a new hypothesis that major seismic zones are restricted to places where the large-scale basement structures have been damaged by concentrated crustal deformation,” a pair of researchers from the University of Kentucky and the University of Memphis write in a new study.

This concentrated crustal deformation – or CCD – can include any activity that at some point in Earth’s history reduced the strength of the ancient rocky layers that make up the deepest parts of a continental crust.

The researchers claim the basement structures beneath a number of the sites where frequent intraplate quakes occur are associated with ancient plate reorganisations.

These scars would have been left hundreds of millions of years ago, only to have been reactivated over time.

The Charlevoix Seismic Zone (CSZ) provides a perfect example. The area stretches 85 kilometres (53 miles) along the Saint Lawrence River in southeastern Quebec, and has experienced five earthquakes greater than magnitude 6 since 1663.

Every year there are hundreds of microearthquakes, most too tiny to feel.

Not only is the CSZ is located on a set of faults deep in its basement, it is the site of a significant meteor impact that struck close to 360 million years ago.

The region’s earthquakes are mostly concentrated right where this collision occurred, with some rumbling up into the northeast for a short way along the faults.

Please see more details

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *